Near-infrared tunable optical filter design at cryogenic temperaturas

Main Article Content

Luz Esther González Reyes
https://orcid.org/0000-0002-2302-1774
Camilo Eduardo Echeverry Naranjo
https://orcid.org/0000-0003-2910-8229

Abstract

In this paper, some results of the project "Design and implementation of optical filters based on photonic crystals for the transmission of the information at cryogenic temperatures" are presented. Research on the optical response of a photonic filter operating in the near-infrared spectrum at cryogenic temperatures under the variation of the angle of incidence of light is  also shown.

References

Aly, A. H., Ghany, S. E.-S. E. S. A., B.M.Kamal, & D.Vigneswaran. (2020). Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceramics International, 46(1), 365–369. https://doi.org/10.1016/j.ceramint.2019.08.270

Butler, S. M., Singaravelu, P. K. J., O’Faolain, L., & Hegarty, S. P. (2020). Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. Optics Express, 28(26), 38813. https://doi.org/10.1364/oe.410525

Chen, H., Chen, Z., Yang, H., Wen, L., Yi, Z., Zhou, Z., Dai, B., Zhang, J., Wu, X., & Wu, P. (2022). Multi-mode surface plasmon resonance absorber based on dart-type single-layer grapheme. RSC Advances, 12(13), 7821–7829. https://doi.org/10.1039/d2ra00611a

Clementi, M., Iadanza, S., Schulz, S. A., Urbinati, G., Gerace, D., O’Faloain, L., & Galli, M. (2021). Thermo-optically induced transparency on a photonic chip. Light: Science & Applications, 10(1), 240. https://doi.org/10.1038/s41377-021-00678-4

Delgado-Sanchez, J. M., & Lillo-Bravo, I. (2020). Angular dependence of photonic crystal coupled to photovoltaic solar cell. Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051574

González, L. E., Ordoñez, J. E., Melo-Luna, C. A., Mendoza, E., Reyes, D., Zambrano, G., Porras-Montenegro, N., Granada, J. C., Gómez, M. E., & Reina, J. H. (2020). Experimental realisation of tunable ferroelectric/superconductor (BTO / YBCO) N/ STO 1D photonic crystals in the whole visible spectrum. Scientific Reports, 10(1), 13083. https://doi.org/10.1038/s41598-020-69811-4

González, L. E., Ordoñez, J. E., Zambrano, G., & Porras-Montenegro, N. (2018). YBa2Cu3O7−x/BaTiO3 1D Superconducting Photonic Crystal with Tunable Broadband Response in the Visible Range. Journal of Superconductivity and Novel Magnetism, 31(7), 2003–2009. https://doi.org/10.1007/s10948-017-4427-4

González, L. E., Segura-Gutierrez, L. M., Ordoñez, J. E., Zambrano, G., & Reina, J. H. (2022). A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. In Photonics, 9(7). https://doi.org/10.3390/photonics9070485

Hao, J. J., Gu, K. Da, Xia, L., Liu, Y. J., Yang, Z. F., & Yang, H. W. (2020). Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Communications in Nonlinear Science and Numerical Simulation, 89, 105299. https://doi.org/10.1016/j.cnsns.2020.105299

Karothu, D. P., Dushaq, G., Ahmed, E., Catalano, L., Polavaram, S., Ferreira, R., Li, L., Mohamed, S., Rasras, M., & Naumov, P. (2021). Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nature Communications, 12(1), 1326. https://doi.org/10.1038/s41467-021-21324-y

Kaviani Baghbadorani, H., & Barvestani, J. (2021). Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes. Applied Surface Science, 537, 147730. https://doi.org/10.1016/j.apsusc.2020.147730

Li, H., Low, M. X., Ako, R. T., Bhaskaran, M., Sriram, S., Withayachumnankul, W., Kuhlmey, B. T., & Atakaramians, S. (2020). Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip. Advanced Materials Technologies, 5(7), 2000117. https://doi.org/10.1002/admt.202000117

Mbakop, F. K., Tom, A., Dadjé, A., Vidal, A. K. C., & Djongyang, N. (2020). One-dimensional comparison of Tio2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared. Chinese Journal of Physics, 67, 124–134. https://doi.org/10.1016/j.cjph.2020.06.004

Mehaney, A., Abadla, M. M., & Elsayed, H. A. (2021). 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. Journal of Molecular Liquids, 322, 114978. https://doi.org/10.1016/j.molliq.2020.114978

Sakata, R., Ishizaki, K., De Zoysa, M., Fukuhara, S., Inoue, T., Tanaka, Y., Iwata, K., Hatsuda, R., Yoshida, M., Gelleta, J., & Noda, S. (2020). Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nature Communications, 11(1), 3487. https://doi.org/10.1038/s41467-020-17092-w

Schlafmann, K. R., & White, T. J. (2021). Retention and deformation of the blue phases in liquid crystalline elastomers. Nature Communications, 12(1), 4916. https://doi.org/10.1038/s41467-021-25112-6

Segal, N., Keren-Zur, S., Hendler, N., & Ellenbogen, T. (2015). Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 9(3), 180–184. https://doi.org/10.1038/nphoton.2015.17

Shi, C., Yuan, J., Luo, X., Shi, S., Lu, S., Yuan, P., Xu, W., Chen, Z., & Yu, H. (2020). Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Optics Communications, 461, 125222. https://doi.org/10.1016/j.optcom.2019.125222

Soltani, O., Francoeur, S., Baraket, Z., & Kanzari, M. (2021). Tunable polychromatic filters based on semiconductor-superconductor-dielectric periodic and quasi-periodic hybrid photonic crystal. Optical Materials, 111, 110690. https://doi.org/10.1016/j.optmat.2020.110690

Soltani, O., Zaghdoudi, J., & Kanzari, M. (2020). Tunable filter properties in 1D linear graded magnetized cold plasma photonic crystals based on Octonacci quasi-periodic structure. Photonics and Nanostructures - Fundamentals and Applications, 38, 100744. https://doi.org/10.1016/j.photonics.2019.100744

Zaky, Z. A., & Aly, A. H. (2020). Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. Journal of Superconductivity and Novel Magnetism, 33(10), 2983–2990. https://doi.org/10.1007/s10948-020-05584-1

Zheng, W., Luo, X., Zhang, Y., Ye, C., Qin, A., Cao, Y., & Hou, L. (2020). Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals. ACS Applied Materials and Interfaces, 12(20), 23190–23198. https://doi.org/10.1021/acsami.0c03508