Diseño de filtro óptico sintonizable en el infrarrojo cercano a temperaturas criogénicasas
Contenido principal del artículo
Resumen
En este artículo de divulgación se exponen algunos resultados del proyecto “Diseño e implementación de filtros ópticos basados en cristales fotónicos para la transmisión de información a temperaturas criogénicas”. Se presenta un estudio de la respuesta óptica de un filtro fotónico, operando en el infrarrojo cercano del espectro a temperaturas criogénicas bajo la variación del ángulo de incidencia de la luz.
Referencias
Aly, A. H., Ghany, S. E.-S. E. S. A., B.M.Kamal, & D.Vigneswaran. (2020). Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceramics International, 46(1), 365–369. https://doi.org/10.1016/j.ceramint.2019.08.270
Butler, S. M., Singaravelu, P. K. J., O’Faolain, L., & Hegarty, S. P. (2020). Long cavity photonic crystal laser in FDML operation using an akinetic reflective filter. Optics Express, 28(26), 38813. https://doi.org/10.1364/oe.410525
Chen, H., Chen, Z., Yang, H., Wen, L., Yi, Z., Zhou, Z., Dai, B., Zhang, J., Wu, X., & Wu, P. (2022). Multi-mode surface plasmon resonance absorber based on dart-type single-layer grapheme. RSC Advances, 12(13), 7821–7829. https://doi.org/10.1039/d2ra00611a
Clementi, M., Iadanza, S., Schulz, S. A., Urbinati, G., Gerace, D., O’Faloain, L., & Galli, M. (2021). Thermo-optically induced transparency on a photonic chip. Light: Science & Applications, 10(1), 240. https://doi.org/10.1038/s41377-021-00678-4
Delgado-Sanchez, J. M., & Lillo-Bravo, I. (2020). Angular dependence of photonic crystal coupled to photovoltaic solar cell. Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051574
González, L. E., Ordoñez, J. E., Melo-Luna, C. A., Mendoza, E., Reyes, D., Zambrano, G., Porras-Montenegro, N., Granada, J. C., Gómez, M. E., & Reina, J. H. (2020). Experimental realisation of tunable ferroelectric/superconductor (BTO / YBCO) N/ STO 1D photonic crystals in the whole visible spectrum. Scientific Reports, 10(1), 13083. https://doi.org/10.1038/s41598-020-69811-4
González, L. E., Ordoñez, J. E., Zambrano, G., & Porras-Montenegro, N. (2018). YBa2Cu3O7−x/BaTiO3 1D Superconducting Photonic Crystal with Tunable Broadband Response in the Visible Range. Journal of Superconductivity and Novel Magnetism, 31(7), 2003–2009. https://doi.org/10.1007/s10948-017-4427-4
González, L. E., Segura-Gutierrez, L. M., Ordoñez, J. E., Zambrano, G., & Reina, J. H. (2022). A Multichannel Superconductor-Based Photonic Crystal Optical Filter Tunable in the Visible and Telecom Windows at Cryogenic Temperature. In Photonics, 9(7). https://doi.org/10.3390/photonics9070485
Hao, J. J., Gu, K. Da, Xia, L., Liu, Y. J., Yang, Z. F., & Yang, H. W. (2020). Research on low-temperature blood tissues detection biosensor based on one-dimensional superconducting photonic crystal. Communications in Nonlinear Science and Numerical Simulation, 89, 105299. https://doi.org/10.1016/j.cnsns.2020.105299
Karothu, D. P., Dushaq, G., Ahmed, E., Catalano, L., Polavaram, S., Ferreira, R., Li, L., Mohamed, S., Rasras, M., & Naumov, P. (2021). Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared. Nature Communications, 12(1), 1326. https://doi.org/10.1038/s41467-021-21324-y
Kaviani Baghbadorani, H., & Barvestani, J. (2021). Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes. Applied Surface Science, 537, 147730. https://doi.org/10.1016/j.apsusc.2020.147730
Li, H., Low, M. X., Ako, R. T., Bhaskaran, M., Sriram, S., Withayachumnankul, W., Kuhlmey, B. T., & Atakaramians, S. (2020). Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip. Advanced Materials Technologies, 5(7), 2000117. https://doi.org/10.1002/admt.202000117
Mbakop, F. K., Tom, A., Dadjé, A., Vidal, A. K. C., & Djongyang, N. (2020). One-dimensional comparison of Tio2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared. Chinese Journal of Physics, 67, 124–134. https://doi.org/10.1016/j.cjph.2020.06.004
Mehaney, A., Abadla, M. M., & Elsayed, H. A. (2021). 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. Journal of Molecular Liquids, 322, 114978. https://doi.org/10.1016/j.molliq.2020.114978
Sakata, R., Ishizaki, K., De Zoysa, M., Fukuhara, S., Inoue, T., Tanaka, Y., Iwata, K., Hatsuda, R., Yoshida, M., Gelleta, J., & Noda, S. (2020). Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nature Communications, 11(1), 3487. https://doi.org/10.1038/s41467-020-17092-w
Schlafmann, K. R., & White, T. J. (2021). Retention and deformation of the blue phases in liquid crystalline elastomers. Nature Communications, 12(1), 4916. https://doi.org/10.1038/s41467-021-25112-6
Segal, N., Keren-Zur, S., Hendler, N., & Ellenbogen, T. (2015). Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 9(3), 180–184. https://doi.org/10.1038/nphoton.2015.17
Shi, C., Yuan, J., Luo, X., Shi, S., Lu, S., Yuan, P., Xu, W., Chen, Z., & Yu, H. (2020). Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Optics Communications, 461, 125222. https://doi.org/10.1016/j.optcom.2019.125222
Soltani, O., Francoeur, S., Baraket, Z., & Kanzari, M. (2021). Tunable polychromatic filters based on semiconductor-superconductor-dielectric periodic and quasi-periodic hybrid photonic crystal. Optical Materials, 111, 110690. https://doi.org/10.1016/j.optmat.2020.110690
Soltani, O., Zaghdoudi, J., & Kanzari, M. (2020). Tunable filter properties in 1D linear graded magnetized cold plasma photonic crystals based on Octonacci quasi-periodic structure. Photonics and Nanostructures - Fundamentals and Applications, 38, 100744. https://doi.org/10.1016/j.photonics.2019.100744
Zaky, Z. A., & Aly, A. H. (2020). Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. Journal of Superconductivity and Novel Magnetism, 33(10), 2983–2990. https://doi.org/10.1007/s10948-020-05584-1
Zheng, W., Luo, X., Zhang, Y., Ye, C., Qin, A., Cao, Y., & Hou, L. (2020). Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals. ACS Applied Materials and Interfaces, 12(20), 23190–23198. https://doi.org/10.1021/acsami.0c03508